

DOE Sci. & Tec. Review

Aihong Tang

Assistant Scientist
Co-convenor of STAR event-by-event physics working group

Objectives

- Anisotropic flow studies Understand the bulk properties of the matter created at RHIC
 - How perfect ? $(v_4/v_2^2 \text{ ratio})$ (BNL & NIKHEF)
 - Reaction dynamics at early time (direct photon flow) (BNL & YALE)
 - Phase transition signal via directed flow ?(BNL,UCLA,LBL,WAYNE and KENT)
 - Understand initial conditions via event by event v₂ fluctuations (BNL,UCLA,WAYNE)
- Strangelet Search at RHIC (BNL, Space Sci. Lab UC Berkeley, WAYNE, KENT)

v₄/v₂² ratio : Understanding "how perfect" is the matter

- Use both event plane method and higher order cumulant method to study the ratio. The latter can be done by STAR only so far.
- A CPU intensive project, thanks to STAR computing team to make this job done more efficiently.

- v₄/v₂² is sensitive to degree of thermalization
- Explore the property of the matter by comparing the ratio from the data to that from Hydro prediction

Joint effort with Y. Bai (NIKHEF) and R. Snellings (NIKHEF)

- Different reaction dynamics (jet energy loss, positive space-momentum correlation etc.) predict different direct photon v₂ behaviors at mid-p_t range.
- Study directed photon v₂ involving QGP would provide a stringent test of the reaction dynamics at early time

- Not an easy job because large nonflow effect at high p_t, as well as other systematics from STAR BEMC
- Use a few different methods (scalar product, cumulant, event plane from FTPC etc.) to cross check inclusive photon v₂
- Inclusive photon v₂
 measured up to 10 GeV/c
 in p_t

Joint effort with G. Lin (Yale)

- No obvious wiggle structure seen for charged particles.
- Charged particle directed flow is in the direction opposite to that of fragmentation neutrons

 "Anti-flow" in near central collisions, a signature of first order phase transition, will cause protons at mid-rapidity flow in the direction of pion flow

Studying flow fluctuation by measuring Event by Event v₂

$$\frac{\left\langle Q_{e}Q_{w}u_{2}^{*}\right\rangle }{\left\langle Q_{e}Q_{w}^{*}\right\rangle }=\frac{\left\langle M_{e}M_{w}\right\rangle \left\langle v_{1,e}v_{1,w}\right\rangle v_{2}}{\left\langle M_{e}M_{w}\right\rangle \left\langle v_{1,e}v_{1,w}\right\rangle }=v_{2}$$

- Non-flow suppressed,
- fluctuation contributed minimum
- the least biased v₂ measurement

- Flow fluctuation may help us understanding the initial condition
- Not well explored until recently
- Using 1st order event plane from ZDC-SMD, for the first time, we can measure event by event v₂ - we can study v₂ fluctuation

Strangelet Search at RHIC

- Pomeron breaking could produce strangelet at forward rapidity
- Can be detected by STAR -ZDC SMD

- First search for strangelet at RHIC, focused on forward rapidity.
- Upper limits is set.

Joint effort with Z. Xu (BNL), H. Crawford (Space Sci. Lab. UC Berkeley), D. Keane (Kent), B. Szeliga (Wayne), S. Voloshin(Wayne), G. Wang(Kent)

- Anisotropic flow studies will help us understand in detail the property of the matter that RHIC has recreated. STAR/BNL group has advanced technologies for these studies, we keep implementing new ideas and continue to hold a strong position in this area in Heavy Ion Community.
- We have made the first attempt to search for strangelets at RHIC.